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We examine how large the L” norm on [—1,1] of the derivative of a real
algebraic polynomial of degree at most n with zeros only in [—1, 1] can be if the
L? norm of the polynomial is 1. © 1992 Academic Press, Inc.

Let H, be the class of real algebraic polynomials of degree n, whose
zeros all lie in the interval [—1,1]. Let R, be the class of real
trigonometric polynomials of degree n with only real roots. Let

A1 Cla,b] — (VA Lo[a,b] = ai“f’s(b |f(x),
b i/p
n=([ e ax) " for 1<p<n

In 1939, P. Turan [4] proved that for fe H,,

”f’“C[fl,lj > Cn'? ”f“c[—x, 1>

where here and throughout the whole paper, C always indicates some
positive absolute constant. Later, J. Erdd [3] improved the constant
above. In 1976, A. K. Varma [ 5] established the corresponding inequality
in L? space. The general form for 1 <p < oo of the inequality is due to the
author [77]:

THEOREM 1. If fe H,, then for 1 <p < o,
”f'”u[q,u?(?nm ”f”u[—1,1]-

In 1983, A. K. Varma [6] obtained the best possible constant in this
inequality when p=2. In 1986, V. F. Babenko and S. A. Pichugov [1, 2]
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found the best possible constants in this inequality and in the corre-
sponding trigonometric case when p = 0.

In [8] we considered similar results in L? for 0<p<1.

The object of this paper is to establish the following more general result.

THEOREM 2. [If fe H,, then for 1 <p<g< o0,

£ Pi-1,112 Cn'/2= /10 AN L[ —1,17- (%)

Proof. Denote by —1<x, <x,< -+ <x,<1 all the distinct zeros of
feH,, and the order of x; by m;. Write the maximum point of |f(x)|
between (x;, x;,,) as a;. If x;> —1 or x, <1, set ag= —1 or o, = 1. Also,
let

We divide the proof into several cases.

Case 1. a;—x;<n~"?for some j. Then applying Holder's inequality we
have

% o Plg
[ Gl dxnte- v lf(a,-npn“’1)/2(aj—xj)*f’/"([ lf(x)l"dx> ,

Xj X,

that is,

{7177 Go1P dx s mira—as oo ( INGE dx)m.

Xj X,

If o;—x;>n"'"? for some j, put d;= [ (a;— x;)n'”*], where [x] denotes
the greatest integer not exceeding x.

Case 2.1. ocj—xj>n‘1/2 for some j. Then as above,

a;— di/n'l? o — dy/n'/?
j If'(x)|p dx Zn(pq~q+p)/(2¢1) (I

i

Y20
) dx) .

Case 22. o, — x; > n~"* for some j, and |f(a; — m ') >
21f(a; — (t + Yn=')| for some t=0,1,.,d;, — 1. Using Holder’s
inequality again, we have

a;— t/nl/2
| P07 dx 20~V | flay— tn =) — flay— (1 4+ Dn~ P17,

aj— (t+ 1)m2
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and since
|fla—tn™ ") 221 f(o;~ (t+ Dn~'2)),
we get
a/__,/nl/Z — t/n /112 Plg
f I (x)Pdx=>2" Py (pe~aq+p)Q2q) (f If(x)lqu) )
aj— (t+ 1)/n¥/? i~ (t+ 1)/nl72

Case 23. a; — x; > n "> for some j, and |f(o, —rm '?)| <

2| f(e;— (r+1)n~"?)| for some r=0, 1, ..., d,— 1. Applying the mean value
theorem to the function f'(x)/f(x) on the interval (x;, ;] and noting that
f'(2;)=0, we have for xe(x;, a;,— 30~ "), j#k,

£ om _n”
m(x) = - x) Z 20 Celxay);
i—1x“‘x: I—I(é— ) !
a similar calculation leads to
k k 1/2
m, m, n
mx)= ) ——- 3 — > —
Six—x, Slae—x B

for x € (x,, ax—3n""?). So

G — (2r +1)/(2n12)

aj— r/nl/2
I SN ez G Im()l? d

% — (r+ 1)/n'/2 aj— (r+1)/nl?
227 DR | f(a,— (r+ Dn "2
> 2—4r—1,p—1)2 If(“j“ mfl/Z),p;
hence

m,_,/,,x/z

aj— rnli2 '
j’ Lf(x)]” dx > 24P — 1, (pa—q+p)/(29) (j

aj— (r+ 1)nl?2 aj— (r+ 1)/nl?2

plq
If(x)lqu> .

Now Cases 2.1-2.3 prove that

% %j la
j lf'(x)|p dx>2—4p~ln(pq—q+p)/(2q) <[ If(x)lq dx)

X

for a;— x;>n="?2 while Case 1 proves the inequality if a;—x;<n" "2 The

same 1nequa11ty clearly holds if j' is replaced with j;fjj“. Summing over all
J» we get the claimed inequality. |

With f(x)=(1—x?)["?) we see that the order n'/>~ /) +1/22) in (%)
cannot be improved.
The proofs for the following theorems are similar.
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THEOREM 3. Let 1<p<g< oo, and f(x) be an nth degree algebraic
polynomial, which has only real roots. If at most k roots of f(x) lie outside
the interval [ —1, 1], then

W p—1,92 Cn' 2= VenT VRO 0 11,

where C, is a positive constant depending only upon k.

THEOREM 4. Let 1<p<g<co.IffeR,, then

q
— 2
”f’”b"[O,Zn] > Cn'/2~ e+ 120 (WAl L9[0,277"
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