Some Remarks on Turán's Inequality

S. P. Zhou
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, NS Canada B3H 3 J5
Communicated by T. J. Rivlin
Received July 13, 1990; revised January 16, 1991

We examine how large the L^{p} norm on $[-1,1]$ of the derivative of a real algebraic polynomial of degree at most n with zeros only in $[-1,1]$ can be if the L^{q} norm of the polynomial is 1 . (C) 1992 Academic Press, Inc.

Let H_{n} be the class of real algebraic polynomials of degree n, whose zeros all lie in the interval $[-1,1]$. Let R_{n} be the class of real trigonometric polynomials of degree n with only real roots. Let

$$
\begin{gathered}
\|f\|_{C[a, b]}=\|f\|_{L^{x}[a, b]}=\max _{a \leqslant x \leqslant b}|f(x)|, \\
\|f\|_{L^{\rho}[a, b]}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p} \quad \text { for } \quad 1 \leqslant p<\infty .
\end{gathered}
$$

In 1939, P. Turán [4] proved that for $f \in H_{n}$,

$$
\left\|f^{\prime}\right\|_{C[-1,1]} \geqslant C n^{1 / 2}\|f\|_{C[-1,1]},
$$

where here and throughout the whole paper, C always indicates some positive absolute constant. Later, J. Erőd [3] improved the constant above. In 1976, A. K. Varma [5] established the corresponding inequality in L^{2} space. The general form for $1 \leqslant p \leqslant \infty$ of the inequality is due to the author [7]:

Theorem 1. If $f \in H_{n}$, then for $1 \leqslant p \leqslant \infty$,

$$
\left\|f^{\prime}\right\|_{\nu \rho-1,1]} \geqslant C n^{1 / 2}\|f\|_{\nu[-1,1]} .
$$

In 1983, A. K. Varma [6] obtained the best possible constant in this inequality when $p=2$. In 1986, V. F. Babenko and S. A. Pichugov [1, 2]
found the best possible constants in this inequality and in the corresponding trigonometric case when $p=\infty$.

In [8] we considered similar results in L^{p} for $0<p<1$.
The object of this paper is to establish the following more general result.
Theorem 2. If $f \in H_{n}$, then for $1 \leqslant p \leqslant q \leqslant \infty$,

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{L^{p}[-1,1]} \geqslant C n^{1 / 2-1 /(2 p)+1 /(2 q)}\|f\|_{L^{q}[-1,1]} . \tag{*}
\end{equation*}
$$

Proof. Denote by $-1 \leqslant x_{1}<x_{2}<\cdots<x_{k} \leqslant 1$ all the distinct zeros of $f \in H_{n}$, and the order of x_{i} by m_{i}. Write the maximum point of $|f(x)|$ between $\left(x_{i}, x_{i+1}\right)$ as α_{i}. If $x_{1}>-1$ or $x_{k}<1$, set $\alpha_{0}=-1$ or $\alpha_{k}=1$. Also, let

$$
m(x)=\sum_{i=1}^{k} \frac{m_{i}}{x-x_{i}} .
$$

We divide the proof into several cases.
Case 1. $\alpha_{j}-x_{j} \leqslant n^{-1 / 2}$ for some j. Then applying Hölder's inequality we have

$$
\int_{x_{j}}^{\alpha_{j}}\left|f^{\prime}(x)\right|^{p} d x \geqslant n^{(p-1) / 2}\left|f\left(\alpha_{j}\right)\right|^{p} \geqslant n^{(p-1) / 2}\left(\alpha_{j}-x_{j}\right)^{-p / q}\left(\int_{x_{j}}^{\alpha_{j}}|f(x)|^{q} d x\right)^{p / q},
$$

that is,

$$
\int_{x_{j}}^{\alpha_{j}}\left|f^{\prime}(x)\right|^{p} d x \geqslant n^{(p q-q+p) /(2 q)}\left(\int_{x_{j}}^{x_{j}}|f(x)|^{q} d x\right)^{p / q}
$$

If $\alpha_{j}-x_{j} \geqslant n^{-1 / 2}$ for some j, put $d_{j}=\left[\left(\alpha_{j}-x_{j}\right) n^{1 / 2}\right]$, where $[x]$ denotes the greatest integer not exceeding x.

Case 2.1. $\alpha_{j}-x_{j}>n^{-1 / 2}$ for some j. Then as above,

$$
\int_{x_{j}}^{x_{j}-d / n^{1 / 2}}\left|f^{\prime}(x)\right|^{p} d x \geqslant n^{(p q-q+p) /(2 q)}\left(\int_{x_{j}}^{x_{j}-\alpha / n^{1 / 2}}|f(x)|^{q} d x\right)^{p / q} .
$$

Case 2.2. $\alpha_{j}-x_{j}>n^{-1 / 2}$ for some j, and $\left|f\left(\alpha_{j}-t n^{-1 / 2}\right)\right| \geqslant$ $2\left|f\left(\alpha_{j}-(t+1) n^{-1 / 2}\right)\right|$ for some $t=0,1, \ldots, d_{j}-1$. Using Hölder's inequality again, we have

$$
\int_{\alpha_{j}-(t+1) / n^{1 / 2}}^{\alpha_{j}-t / n^{1 / 2}}\left|f^{\prime}(x)\right|^{p} d x \geqslant n^{(p-1) / 2}\left|f\left(\alpha_{j}-t n^{-1 / 2}\right)-f\left(\alpha_{j}-(t+1) n^{-1 / 2}\right)\right|^{p},
$$

and since

$$
\left|f\left(\alpha_{j}-t n^{-1 / 2}\right)\right| \geqslant 2\left|f\left(\alpha_{j}-(t+1) n^{-1 / 2}\right)\right|
$$

we get

$$
\int_{x_{j}-(t+1) / n^{1 / 2}}^{\alpha_{j}-t / n^{1 / 2}}\left|f^{\prime}(x)\right|^{p} d x \geqslant 2^{-p} n^{(p q-q+p) /(2 q)}\left(\int_{\alpha_{j}-(t+1) / n^{1 / 2}}^{x_{j}-t / n^{1 / 2}}|f(x)|^{q} d x\right)^{p / q}
$$

Case 2.3. $\quad \alpha_{j}-x_{j}>n^{-1 / 2}$ for some j, \quad and $\left|f\left(\alpha_{j}-r n^{-1 / 2}\right)\right|<$ $2\left|f\left(\alpha_{j}-(r+1) n^{-1 / 2}\right)\right|$ for some $r=0,1, \ldots, d_{j}-1$. Applying the mean value theorem to the function $f^{\prime}(x) / f(x)$ on the interval $\left(x_{j}, \alpha_{j}\right]$ and noting that $f^{\prime}\left(\alpha_{j}\right)=0$, we have for $x \in\left(x_{j}, \alpha_{j}-\frac{1}{2} n^{-1 / 2}\right), j \neq k$,

$$
m(x)=\sum_{i=1}^{k} \frac{m_{i}}{x-x_{i}}=\left(\alpha_{j}-x\right) \sum_{i=1}^{k} \frac{m_{i}}{\left(\xi-x_{i}\right)^{2}} \geqslant \frac{n^{1 / 2}}{8}, \quad \xi \in\left(x, \alpha_{j}\right)
$$

a similar calculation leads to

$$
m(x) \geqslant \sum_{i=1}^{k} \frac{m_{i}}{x-x_{i}}-\sum_{i=1}^{k} \frac{m_{i}}{\alpha_{k}-x_{i}} \geqslant \frac{n^{1 / 2}}{8}
$$

for $x \in\left(x_{k}, \alpha_{k}-\frac{1}{2} n^{-1 / 2}\right)$. So

$$
\begin{aligned}
\int_{\alpha_{j}-(r+1) / n^{1 / 2}}^{\alpha_{j}-r / n^{1 / 2}}\left|f^{\prime}(x)\right|^{p} d x & \geqslant \int_{\alpha_{j}-(r+1) / n^{1 / 2}}^{\alpha_{j}-(2 r+1) /\left(2 n^{1 / 2}\right)}|f(x)|^{p}|m(x)|^{p} d x \\
& \geqslant 2^{-3 p-1} n^{(p-1) / 2}\left|f\left(\alpha_{j}-(r+1) n^{-1 / 2}\right)\right|^{p} \\
& \geqslant 2^{-4 p-1} n^{(p-1) / 2}\left|f\left(\alpha_{j}-r n^{-1 / 2}\right)\right|^{p} ;
\end{aligned}
$$

hence

$$
\int_{\alpha_{j}-(r+1) / n^{1 / 2}}^{\alpha_{j}-r / n^{1 / 2}}\left|f^{\prime}(x)\right|^{p} d x \geqslant 2^{-4 p-1} n^{(p q-q+p) /(2 q)}\left(\int_{\alpha_{j}-(r+1) / n^{1 / 2}}^{\alpha_{j}-r / n^{1 / 2}}|f(x)|^{q} d x\right)^{p / q}
$$

Now Cases 2.1-2.3 prove that

$$
\int_{x_{j}}^{x_{j}}\left|f^{\prime}(x)\right|^{p} d x \geqslant 2^{-4 p-1} n^{(p q-q+p) /(2 q)}\left(\int_{x_{j}}^{x_{j}}|f(x)|^{q} d x\right)^{p / q}
$$

for $\alpha_{j}-x_{j}>n^{-1 / 2}$, while Case 1 proves the inequality if $\alpha_{j}-x_{j} \leqslant n^{-1 / 2}$. The same inequality clearly holds if $\int_{x_{j}}^{\alpha_{j}}$ is replaced with $\int_{\alpha_{j}}^{x_{j+1}}$. Summing over all j, we get the claimed inequality.

With $f(x)=\left(1-x^{2}\right)^{[n / 2]}$, we see that the order $n^{1 / 2-1 /(2 p)+1 /(2 q)}$ in (*) cannot be improved.

The proofs for the following theorems are similar.

Theorem 3. Let $1 \leqslant p \leqslant q \leqslant \infty$, and $f(x)$ be an $n t h$ degree algebraic polynomial, which has only real roots. If at most k roots of $f(x)$ lie outside the interval $[-1,1]$, then

$$
\left\|f^{\prime}\right\|_{L^{p}[-1,1]} \geqslant C_{k} n^{1 / 2-1 /(2 p)+1 /(2 q)}\|f\|_{L^{q}[-1,1]},
$$

where C_{k} is a positive constant depending only upon k.
Theorem 4. Let $1 \leqslant p \leqslant q \leqslant \infty$. If $f \in R_{n}$, then

$$
\left\|f^{\prime}\right\|_{L^{\rho}[0,2 \pi]} \geqslant C n^{1 / 2-1 /(2 p)+1 /(2 q)}\|f\|_{L^{q}[0,2 \pi]} .
$$

Acknowledgments

The author thanks Dr. Peter Borwein for his valuable discussions and comments. Many thanks are also due to the referees for their helpful comments.

References

1. V. F. Babenko and S. A. Pichugov, Accurate inequality for the derivatives of trigonometric polynomials, which have only real zeros, Math. Notes 39 (1986), 179-182.
2. V. F. Babenko and S. A. Pichugov, Inequality for the derivatives of polynomials with real zeros, Ukrain. Math. J. 38 (1986), 347-351.
3. J. Erőd, Bizonyos polinomok maximumairól, Math. Fiz. Lapok 46 (1939), 58-82.
4. P. Turán, Über die Äbleitung von Polynomen, Compositio Math. 7 (1939), 89-95.
5. A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials satisfying certain conditions, Proc. Amer. Math. Soc. 55 (1976), 305-309.
6. A. K. Varma, Some inequalities of algebraic polynomials having all zeros inside $[-1,1]$, Proc. Amer. Math. Soc. 88 (1983), 227-233.
7. S. P. Zhou, On Turán's inequality in L^{p} norm (Chinese), J. Hangzhou Univ. 11 (1984), 28-33. MR 85j:26025.
8. S. P. Zhou, An extension of the Turán inequality in L^{p} for $0<p<1$, J. Math. Res. Exposition 6, No. 2 (1986), 27-30. MR 89c:41011.
